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Starting from previous work, where Rayleigh–Schrödinger perturbation theory has been
reformulated in matrix form, a practical algorithm implementation is described using both
full matrix and vector alternatives. An heuristic convergence sufficiency criterion based
on Gershgorin discs is also presented. Some numerical examples related to atomic CI
computations are reported to illustrate the theoretical framework.

1. Introduction

The relevance of perturbation theory (PT) into the treatment in some procedures
related to CI computational schemes [31,33,34]. A great deal of purely formal PT re-
lated work can be found in [1,2,10,11,13–21,23–27,29,35–37,39–43,47] is well known.
Thus, it seems interesting to develop such practical facets of the theory which may
be useful to wavefunction calculation. Recently, the present authors have published
some papers related to the Rayleigh–Schrödinger PT (RS-PT) [4,6]. In [4], the ma-
trix notation of the RS framework was described. There, the PT treatment is general
enough to study several perturbation matrices or operators at the same time. Here we
focus our work on the practical implementation of the formulation given previously
and the discussion is circumscribed to the most habitual case where only one perturba-
tive term is present. First, the PT problem will be presented from the matrix point of
view. It will be followed by a brief description of the algorithm which implements the
matrix notation of [4]. From the previous algorithm it is straightforward to describe
the related vector notation dealing with the perturbative resolution of a particular state
or eigenvalue–eigenvector pair. A heuristic convergence criterion will be described
afterwards and some calculation examples will be finally given.
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2. Perturbation theory: a matrix point of view

As it is usual, the PT scheme is formulated in order to solve an eigenvalue
problem which can be finally written as the matrix equation

HU = UE, (1)

where the perturbed matrix H is expressed in terms of an unperturbed matrix H (0)

plus a perturbation V :

H = H (0) + V . (2)

The solution of equation (1) is found, from the PT point of view, starting from the full
knowledge of the solution of the unperturbed system secular equation

H(0)U (0) = U (0)E(0), (3)

where the matrices U (0) and E(0) contain in their columns and diagonal elements the
so-called unperturbed eigenvectors and eigenvalues, respectively.

The unperturbed eigenvectors can be used as a working basis set, expanding all the
space of the same dimension as the order of the involved matrices. As the unperturbed
vectors can be considered orthonormalized, it is easy to realize how they can act as a
canonical basis set if the proper definitions are taken into account. Expressing H (0)

by means of the matrix product

H (0) = U (0)E(0)U (0)+, (4)

and defining the following similarity transformation of the perturbation matrix V :

P = U (0)+V U (0), (5)

it is straightforward to express the perturbed matrix to be diagonalized as

H = U (0)RU (0)+, (6)

the matrix R being defined in turn as

R = E(0) + P . (7)

That is, the eigenvalue problem (1) has been transformed into the one associated to
diagonalization of the matrix R. Once this diagonalization is performed, by solving
the secular equation

RZ = ZE, (8)

the obtained eigenvalues are the same as those in equation (1) and the eigenvectors
contained in the columns of the matrix Z express the change of basis, which has to
be applied over the unperturbed basis set U (0), in order to obtain the eigenvectors of
the original secular equation (1), that is,

U = U (0)Z. (9)
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Because of these previous considerations, from now on, the perturbational solution
of the system (8) will be the main concern of the present study. From the PT point
of view, in equation (8), the matrix E(0) can be interpreted as the unperturbed system
matrix and P acts as a perturbative term. Within this problem framework, as E(0)

matrix is diagonal, the same matrix E(0) and the unit matrix I define the transformed
problem unperturbed eigenvalues and eigenvectors, respectively. Moreover, as it is
well known, within the RS-PT, the diagonal elements of the matrix P are the first
order eigenvalue corrections

pii = e(1)
ii ∀i, (10)

being defined as

e(1)
ii =

[
U (0)]+

i
V
[
U (0)]

i
∀i. (11)

Here, [U (0)]i means the column attached to the ith state of matrix U (0) and [U (0)]+i
stands for the conjugate of [U (0)]i in a row form. When speaking of the ith state we
make simultaneous reference to both the ith eigenvalue and the related eigenvector,
following the notation usually encountered in the quantum mechanical framework.

3. Optional unperturbed eigenvalues redefinition

The particular point of view of the preceding section, concerning the diagonal-
ization of matrix R, reflects only a possible particular PT problem choice. In general,
there are infinite continuous ways to split the matrix R as a diagonal matrix plus a
perturbation. For instance, the zeroth and first eigenvalue corrections can be mixed
redefining an equivalent matrix R. For every diagonal element rii of R, one can
choose a parameter γi ∈ (−∞, +∞) which produces the particular splitting for this
element:

rii = e(0)
ii + e(1)

ii = rii(1− γi) + riiγi ∀i, (12)

leading easily towards a parametrized redefinition of the values contained in the diag-
onals of E(0) and P matrices:

e(0)
ii (γi) = rii(1− γi) ∧ pii(γi) = riiγi ∀i, (13)

and leaving the secular equation (8) invariant. In this way, another diagonal unper-
turbed system and a related perturbation matrix are defined. Despite that the whole
matrix R remains unaltered but, from the numerical point of view, the convergence of
the PT is modified. This possibility can be used as an attempt to speed up the con-
vergence of the numerical method or to remove the degeneracy or quasi-degeneracy
problems, if present, in the system under study. The classical PT scheme is equivalent
to using a set of {γi} parameters which leaves invariant the original definitions for the
E(0) and P matrices, provided in equations (3) and (5), respectively.
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4. Matrix and vector algorithms

Here, two algorithms will be described. They are related to the full matrix and
vector notations of the RS-PT. As PT, formulated by means of the considerations of
section 2 above, can be considered a diagonalization procedure, the algorithms defined
below correspond to a full and a partial search of the system states. With respect to the
vector notation, it can be related to the method to find a unique set of eigenparameters
using Jacobi rotations [9].

4.1. Matrix algorithm A1

From the general matrix PT scheme, developed in [4], and the practical consid-
erations outlined above, an algorithm can be described implementing the RS-PT to
solve the secular equation (1). Such a matrix algorithm, if convergent, may find the
solution for all the system’s states. It is described in algorithm A1.

The perturbed eigenvalues and the eigenvectors of matrix R will be calculated
as a truncation of the corresponding RS-PT series

E =

∞∑
p=0

E(p) (14)

and

Z =
∞∑
p=0

Z(p), (15)

respectively, the terms E(p) and Z(p) being the so-called pth eigenvalue and eigen-
vectors corrections. As it was signaled above, the eigenvectors of matrix H will be
obtained at the end of the procedure when the change of basis described in equation (9)
is performed.

A particular case is obtained when all the {γi} parameters appearing in equa-
tion (13) are set to zero. Then, the diagonal of P is null and the unperturbed diagonal
matrix E(0) now contains the sum of the zeroth and first order eigenvalue corrections.
For this particular case, the following notation is used in order to avoid misinterpreta-
tions:

E[0] = E(0) + diag{P } = E(0) +E(1) (16)

and

P 0 = outdiag{P }, (17)

where outdiag{P } stands for the zero-diagonal matrix containing all the elements
pij ∈ P for which i 6= j.

At the beginning of the algorithm A1, if all the {γi} coefficients are set to zero,
the matrices E(0) and P become

E(0) ← E[0] (18)
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and

P ← P 0, (19)

respectively. The whole procedure is slightly simplified because it behaves as if the
first order energy corrections are null, E(1) = 0. In this case the summation of
equation (3b) of the algorithm A1 starts now from p = 2.

Equation (3c) in algorithm A1 can be the origin of divergence problems due to
the implied division. The comments outlined above with respect to the choice of a
good set of {γi} parameters can help to overcome this division by zero drawback,
inherent of RS-PT if present, because the divergence or convergence features of the
algorithm A1 can be significantly altered in this way. A simple numerical example
will be given below.

(1) Start from the known matrices V , U (0) and E(0).
(2) Z(0) = I and P = U (0)+V U (0).

Leave the E(0) and P matrices invariant, or
(a) Define the set of parameters {γi ∈ (−∞, +∞) ∀i};
(b) Define the diagonal elements of matrix E(0) + P:

rii = e(0)
ii + pii ∀i;

(c) Redefine the diagonals of E(0) and P matrices:

e(0)
ii ← rii(1− γi) ∧ pii ← riiγi ∀i.

Define desired maximal order correction w.
Define accepted process tolerance τ.
Define starting correction level: n = 1.

(3) (a) E(n) = diag{PZ(n−1)};

(b) Q(n) = − outdiag{PZ(n−1)} +
∑n−1

p=1 Z
(n−p)E(p);

(c) z(n)
ij = q(n)

ij /(e(0)
ii − e

(0)
jj ) ∀i 6= j, z(n)

ii = 0.

(4) If n = w or |Z(m)| ≈ τ ∀m > n

E =

n∑
k=0

E(k), Z =

n∑
k=0

Z(k), U = U (0)Z

stop process
else

n = n+ 1
go to (3)

end if

Algorithm A1. Full matrix RS-PT algorithm.
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4.2. Vector algorithm A2

On the other hand, the study of the particular expressions, attached to a specific
state, s, may also lead into the formulation of a vector RS-PT scheme. Algorithm A2
constitutes a computational procedure which can be followed to implement a vectorial
PT scheme. The main difference with respect to algorithm A1 can be found in the
particular matrix algebraic operation codified in equation (3c) of the mentioned algo-
rithm: this operation is replaced by a multiplication by a predefined diagonal matrix.
The vector es stands for the canonical vector attached to the sth state. The symbol
δ(E) is called a logical Kronecker delta [5,7] and has a unit value if the expression
E is true, being zero otherwise. The same considerations as in the matrix case apply
here.

(1)Start from the known matrices V , U (0) and E(0).
(2)Define the state s to be studied.

z(0) = es and P = U (0)+V U (0).
Leave the E(0) and P matrices invariant, or

(a) Define the set of parameters {γi ∈ (−∞, +∞) ∀i};
(b) Define the diagonal elements of matrix E(0) + P:

rii = e(0)
ii + pii ∀i;

(c) Redefine the diagonals of E(0) and P matrices:

e(0)
ii ← rii(1− γi) ∧ pii ← riiγi ∀i.

Define diagonal matrix ∆ = {dii = δ(i = s) + δ(i 6= s)(e(0)
ii − e(0)

ss )−1 ∀i}.
Define desired maximal order correction w.
Define accepted process tolerance τ.
Define starting correction level: n = 1.

(3)(a) e(n)
ss = [P ]+s z

(n−1);

(b) z(n) = −∆Pz(n−1) +
∑n−1

p=1 e
(p)
ss∆z(n−p).

(4)If n = w or |z(m)| ≈ τ ∀m > n

ess =

n∑
k=0

e(k)
ss , z =

n∑
k=0

z(k), [U ]s = U (0)z

stop process
else

n = n+ 1
go to (3)

end if

Algorithm A2. Vector RS-PT algorithm for a particular state s.
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5. The Gershgorin-like convergence criterion

When working with the P 0 and E[0] matrices as defined in the previous sections,
it is possible to establish an empirical rule to be known beforehand while the RS-PT
numerical series will converge, when applied to evaluate the sth state eigenparameters.
This criterion cannot be taken as a theorem, because there is not given here any proof,
but provides a sufficient heuristic condition for the PT series convergence. As its
formulation is related to the Gershgorin discs theorem [12,22,44,45] it can be called
Gershgorin-like convergence sufficiency criterion.

For a hermitian matrix R written as the sum of a diagonal matrix E[0] plus a
zero diagonal matrix P 0,

R = E[0] + P 0, (20)

the Gershgorin theorem states that every eigenvalue λi of R will lie in the following
interval, called a Gershgorin disc:

λi ∈ e[0]
ii ±

n∑
j=1

∣∣[P 0]ij
∣∣, (21)

{[P 0]ij} being the elements of the matrix P 0.
Gershgorin-like convergence sufficiency criterion may now be described as fol-

lows: The RS-PT series is convergent for the sth state if the following condition is
fulfilled: ∣∣e[0]

ss − e[0]
ii

∣∣ > n∑
j=1

(∣∣[P 0]sj
∣∣+ ∣∣[P 0]ij

∣∣) ∀i 6= s. (22)

This is equivalent to saying that the RS-PT series converges for the sth state if the
corresponding Gershgorin disc does not overlap with any of the remaining ones.

A computational test of the trueness of the Gershgorin-like convergence criterion
has been performed in a large number (> 106) of randomly constructed matrices of
varied dimensions (2 6 N 6 200). No failures have been encountered.

The Gershgorin convergence criteria has more practical features than the well-
known Kato–Rellich theorem [3,28,32,46]. This last theorem is based on the existence
of a couple of scalars involved in an inequality which must be fulfilled in all the
operators domain. It is a sort of existence theorem and cannot be implemented in a
program code in an immediate form.

6. Application examples

6.1. A naı̈ve illustration of algorithm A2

As a first numerical example, figure 1 summarizes the results obtained from
algorithm A2 for the following 2× 2 matrix expressed in the form of equation (7):



92 E. Besalú, R. Carbó-Dorca / Rayleigh–Schrödinger perturbation theory

R =

(
1 0
0 3

)
+ 0.7

(
−1 1

1 1

)
. (23)

The segments connecting squares represent the first 10 successive partial series terms
for the first eigenvalue when the problem is treated as in the classical PT. It can be seen
how the convergence is improved when the matrix to diagonalize is treated defining
γ1 = γ2 = 0 in equation (13). The present algorithm results are represented in the
same figure by the segments connecting the circles. Of course the result is due to the
fact the PT problem to solve now becomes

R =

(
0.3 0
0 3.7

)
+ 0.7

(
0 1
1 0

)
, (24)

and the separation between the unperturbed values has increased. The purpose of this
simple example is to show the matrix manipulation described in section 3 and how the
convergence characteristics can be improved in this way by means of the definition of
the {γi} parameter set.

Figure 1. Graphical demonstration of how the convergence features of the RS-PT series can be improved
by means of the definition of the {γi} parameters. See text for meaning.
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Table 1
Obtained results for several He-like atoms. Tabulated data are: Atom symbol, atomic number (Z),
number of 1s STO basis functions (n), α and β well-tempered parameters taken from [30], full CI energy
in atomic units, number of states entering into the calculation, MOC: maximal order correction needed
to reproduce the full CI energy using the vectorial PT algorithm A2. The last column indicates if the
convergence is ensured following the Gershgorin-like criterion. Pd result was obtained using a modified

α value.

Atom Z n α β Full CI States MOC EC

He 2 4 0.853931 1.660897 −2.878841857 10 9 N
C 6 7 0.705082 1.669878 −32.37619653 28 6 Y
Ne 10 7 1.187022 1.683000 −93.87577833 28 6 Y
S 16 10 1.187022 1.683000 −246.1255179 55 4 Y
Ti 22 11 0.420420 1.481960 −470.3747763 66 4 Y
Br 35 11 0.980206 1.392420 −1203.249445 66 3 Y
Pd 46 13 1.678062 1.339474 −2087.375226 91 4 Y
I 53 13 0.854821 1.409715 −2775.999807 91 3 Y

6.2. Two-electron full CI calculations

In [8,38] full CI calculations of a He isoelectronic family using spherical functions
are reported. The one-electron basis set was taken as a sequence of well-tempered 1s
AO STO functions described by Koga et al. [30]. The number of functions was also
kept and were taken as defined in the full electron atoms.

Here, the same full CI energy and wavefunctions are obtained using the vector
algorithm A2 for the fundamental state. The matrix to diagonalize has been split
directly into the diagonal part and the off-diagonal one, following a numerical scheme
attached to the form which appears in equation (20). The iterative procedure was
stopped when the reported full CI energy (see [8,30,38]) was reproduced. Table 1
summarizes the obtained results together with the maximal order correction needed to
achieve the energy value and a label with signals if the Gershgorin-like criterion did
a priori assure convergence.

7. Conclusions

After a matrix formulation of the PT problem, two RS-PT algorithms have been
described and it has been shown how they act in a general way as a variational-
like diagonalization procedure when completed. A heuristic sufficiency convergence
criterion has been described and numerical results related to the two-electron atomic
full CI calculations have been given.

Note: The FORTRAN 90 codes implementing the algorithms described here are
available upon request to the authors.
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